

Ministry of the Environment, Conservation and Parks

Pipe Data Form - Watermain, Storm Sewer, Sanitary Sewer, and Forcemain Design Supplement to Application for Approval for Water and Sewage Works

General

Information requested in this form is collected under the authority of the *Ontario Water Resources Act*, R.S.O. 1990 (OWRA), the *Safe Drinking Water Act* (SDWA), the Drinking-Water Systems Regulation (O. Reg. 170.03) and the Environmental Bill of Rights, c. 28, Statutes of Ontario 1993 (EBR). This information will be used to evaluate applications for approval of municipal and private sewage works as required by Section 53 (OWRA) and to evaluate applications for approval of municipal and non-municipal drinking-water systems as required by Sections 31, 36, 38, 52 and 60 of the SDWA.

Instructions

- 1. This form should accompany all Applications for a Water and Sewage Works. It does not replace the Application form for a Certificate of Approval and is required in addition to the supporting technical information described in the Guide for Applying for Municipal and Private Water and Sewage Works. All designs are expected to be in accordance with MECP design guidelines and the 10 State Standards.
- 2. The information contained in this form and the required supporting stamped engineering drawings are the minimum information requirements used to process the application for a Certificate of Approval. All sections MUST be filled out and incomplete forms will be RETURNED to the applicant. If the design does not meet the MECP design guidelines and the 10 State Standards, please explain why and how the issue will be addressed. Additional information may be requested during the review process.
- 3. Application forms and supporting documentation are available from the Client Services and Permissions Branch (CSPB) toll free at 1-800-461-6290 (locally at 416-314-8001), from your local District Office of the Ministry of the Environment, Conservation and Parks, and in the "Publications" section of the Ministry of the Environment, Conservation and Parks website at https://www.ontario.ca/page/water-and-sewage-works-approvals-sample-applications-guides-and-resources
- Questions regarding completion and submission of this data form should be directed to the Client Services and Permissions Branch (CSPB), 135 St. Clair Avenue West, 1st Floor, Toronto ON M4V 1P5, 1-800-461-6290 or 416-314-8001, or to your local District Office of the Ministry of the Environment, Conservation and Parks.

Information for Proponents Applying for a ECA for Water and Sewage Works

Section 53 of the *Ontario Water Resources Act* R.S.O. 1990 and Part V of the *Safe Drinking Water Act* require that anyone who establishes, alters, extends or replaces new or existing water or sewage works do so only in accordance with approval granted by the Director. As a result, any plans to change watermains, storm sewers, sanitary sewers, or combined sewers must first be granted a Certificate of Approval (works which are exempt from Certificate of Approval requirements are detailed in Ontario Regulation 525/98). Detailed information on approval requirements and procedures are contained in separate documents entitled "Guide for Applying for Approval of Municipal and Private Water and Sewage Works (Section 53 *Ontario Water Resources Act* R.S.O. 1990)" and "Guide For Applying For Approvals Related To Municipal And Nun-Municipal Drinking-Water-Systems – Parts V and VI of the *Safe Drinking Water Act* and Drinking-Water Systems Regulation" These documents are available on the Ministry of the Environment, Conservation and Parks website (https://www.ontario.ca/page/water-and-sewage-works-approvals-sample-applications-guides-and-resources) or can be obtained by contacting a client services representative at 413-314-8001.

Criteria for Approval – Water and Sewage Works

The anticipated environmental impacts of water and sewage works are land and water contamination, or overflow causing physical damage, or resulting in adverse effects. Generally, these impacts can be minimized by the appropriate design installation, operating and maintenance of the water and sewage pipes. There are a number of guideline assessment criteria, which will be explained in this data form, and which can be read in greater detail in the following guidelines:

- Guidelines for the design of water distribution systems, Ministry of the Environment, 1985
- Guidelines for the design of sanitary sewage systems, Ministry of the Environment, 1985
- Interim guidelines for the design of storm sewer systems, Ministry of the Environment, 1985
- Procedure for the Determination of Treatment Requirements for Municipal and Private Combined and Partially Separated Sewer Systems (Procedure F-5-5)
- Procedures to govern separation of sewers and watermains (Procedure F-6-1)

Cette publication hautement spécialisée {Pipe Data Form - Watermain, Storm Sewer, Sanitary Sewer, and Forcemain Design Supplement to Application for Approval for Water and Sewage Works} n'est disponible qu'en anglais conformément au Règlement 671/92, selon lequel il n'est pas obligatoire de la traduire en vertu de la *Loi sur les services en français*. Pour obtenir des renseignements en français, veuillez communiquer avec le Ministère de l'Environnement, de la Protection de la nature et des Parcs au 416-314-8001 ou par courriel à <u>enviropermissions@ontario.ca</u>.

1.0 General Project Information
1.1 Site Name
40-60 Emma Street
1.2 Municipality
Town of Grand Valley
Client (if different from Municipality) Sheldon Creek Developments
1.3 Type of Works Project (Please check all that apply)
Watermain Please complete Sections 1.0 to 5.0 of this form
Storm Sewer Please complete Sections 1.0 to 4.0, 6.0 and Appendix A of this form
Sanitary Sewer Please complete Sections 1.0 to 4.0, 7.0 and Appendix B of this form
Forcemain Please complete Sections 1.0 to 4.0, 8.0 and Appendix C of this form
1.4 (a) Project Purpose (Please check all that apply)
Replacement
Increased demand
Connecting existing lines
✓ New development
✓ Other (specify) extension of existing storm system
2.0 Environmental Assessment Act Requirements
2.1 Is this a private sector project?
☐ Yes ✔ No If 'No', please complete 2.2 and 2.3
2.2 (a) Choose applicable Municipal sector Class EA Schedule
✓ Schedule A
Schedule B
Schedule C
(b) From the appropriate Schedule identified in 2.2(a), please identify Project Type and associated Schedule/Paragraph No. which applies to the proposed project
Water Project
Wastewater Project Schedule Number
For 'Schedule B' please complete 2.3(a),(b) For 'Schedule C', please complete 2.3(a),(b),(c)
2.3 (a) Has a Notice of Completion been submitted along with this application?
🗌 Yes 📝 No
(b) Were any Part II Orders (ie "Bump-up" requests) received for this project?
☐ Yes 🖌 No If 'Yes', please provide details:
(c) Has an Environmental Study Report (ESR) been completed?
☐ Yes If 'Yes', please include ESR Cover page with this submission

3.0 Drawings

Note: All drawings must include an accurate scale and be stamped by a Professional engineer. If the drawing is of a large scale where small separation distances cannot be easily measured, these distances must be marked on the drawing or noted as a typical separation.

6238 (2022/11)

Have the following details been	included with this submission?
---------------------------------	--------------------------------

For Questions 5.1 to 5.3, please attach an additional sheet if necessary

5.1 Description of Proposed Watermain(s) (including service area/development)

5.3 For each watermain, pl	lease provide the following d	etails in the chart below	(or equivalent)	
Street	From (street/manhole)	To (street/manhole)	Diameter (mm)	Roughness
🗌 Yes 📋 No	ns a minimum of 150 mm in operating pressure range for		ı ximum day demandî	2
	to		(please indicat	e units)
Yes No	pressure drop below 275 kPa an explanation for this situat		ddress the problem	
 (b) Is there sufficient pre Yes No 5.7 If this is a feedermain of hydraulic transients been co Yes No If 'Yes', please describe 	onsidered?			e connections), have
 (b) How will water stagn (b) How will water stagn (c) Fire Hydrants (c) B (c) Are there any tee-or (c) Yes (c) No (c) No (c) Yes (c) No 	Yes', then please complete 5. ation be addressed? low-off point	becify) .9(b) tee-connection, and at le		valves at each cross-

6.0	Storm	Sewers
-----	-------	--------

For Questions 6.1 to 6.3, please attach an additional sheet if necessary

6.1 Description of Proposed Storm Sewer(s) (including service area/development) Storm sewers on Emma Street from William street to 111m north of William including structures and a connection to an ~0.40 Ha private residential development at 40-60 Emma Street.

6.2 Is this application for approval a part of a larger and/or phased development?

🗌 Yes 🖌 No

If 'Yes', please provide full details on any existing developments including all Certificates of Approval that have been approved or application that are currently under review. Clearly indicate in all stamped engineering drawings and reports which developments belong to which phase and whether they are existing, for current development, or for future development

6.3 Description of Existing Works (in proximity to proposed works) Storm sewers currently do not exist on Emma Street between Mill Street West and William Street. It is serviced by a combination of ditches, ditch inlets with culvert outlets which discharge to the William Street storm sewer.

The William Street storm sewer was upgraded in 2013-2014 to accommodate new development lands on the west end of Town. The design report by Gamsby and Mannerow (Design Brief, William Street Storm Outlet, Grand Valley, Revised, August 2011) includes Rational method calculations for both the 5 year and 100-year storm. The storm sewer was designed with this development in mind; a runoff coefficient of 0.5 was used for the existing residential area. The William Street trunk sewer is 1500mm upstream from the William and Emma Street intersection and a 1220mm x 1920 mm horizontal elliptical concrete pipe (1500mm equivalent) downstream of the intersection to the outlet at the Grand River.

6.4 For each storm sewer, please provide the following details in the chart below (or equivalent)

				1
Street	From (street/manhole)	To (street/manhole)	Diameter (mm)	Roughness
Emma Street	William Street Sewer	TICBMH14	525	0.013
Emma Street	TICBMH14	TICBMH1	525	0.013
Emma Street	TICBMH1	ТІСВМНЗ	450	0.013
Emma Street	TICB2	TICBMH1	300	0.013
Emma Street	TICB4	ТІСВМНЗ	300	0.013
Emma Street	CBMH15	TICBMH1	375	0.013

6.5 Has the Storm Sewer Hydraulic Design Sheet (or equivalent) been included with this submission? (refer to the Guidance Document in Appendix A)

🖌 Yes 🗌 No

6.6 Please indicate which land use surface types are included in the drainage area and list the runoff coefficient(s) used for each type

	Surface Type	Recommended	Used
✓	Asphalt, concrete, roof areas	0.90 - 1.00	0.95
	Gravel	0.80 - 0.85	
✓	Grassed areas, parkland	0.15 - 0.35	0.5
	Commercial	0.75 - 0.85	

6238 (2022/11)

	Surface Type	Recommended	Used
	Industrial	0.65 - 0.75	
\checkmark	Single family dwelling	0.40 - 0.45	0.5
	Semi-detached	0.45 - 0.60	
	Row housing, Townhousing	0.50 - 0.70	
	Apartments	0.60 - 0.75	
	Institutional	0.40 - 0.75	
	Other		

If USED runoff coefficient does not fall within the RECOMMENDED range, please provide rationale below: Steep slope of grassed area therefore used higher coefficient

	t is the full flow velocity ran	-	in the proposed works	?	
2.02		to <u>3.32</u>		m/s	
• •	e full flow velocity is outside and/or erosion in the pipe?	of the range of 0.8 m/s	s to 6.0 m/s, what meas	sures will be employed to reduce se	diment
6.8 (a) Wha	t is the municipality's requir	ement for the minor de	sign storm event?		
🗌 2 yea	ar 📝 5 year 🗌 10 year	Other			
(b) What	storm event has been used	for the design of the p	roposed works?		
🗌 2 yea	ar 📝 5 year 🗌 10 year	Other			
(c) Are th	ere any inlet control device	s (ICDs) proposed in th	e catch basins?		
🖌 Yes	No No				
6.9 Please	indicate the first destination	location that will be rec	ceiving the storm water	r:	
Natural V	/ater Body				
Name	Grand River				
	Has the Conservation Aut	nority granted approval	to discharge to this wa	ater body?	
	🖌 Yes 🗌 No				
Storm Wa	ater Management (SWM) Fa	acility			
Name					
Certif	icate of Approval Number (i	f applicable)			OR
Appli	cation Reference Number (f submitted)			
	Has the Operating Authori	ty (of the SWM facility)	granted approval to di	scharge to this facility?	
	🗌 Yes 🔲 No				
🗌 Municipa	Drain				
Existing S	Sewers				
7.0 Sanitar	y Sewers				
For Question	s 7.1 to 7.3, please attach a	an additional sheet if ne	ecessary		

7.1 Description of Proposed Sanitary Sewer(s) (including service area/development)

6238 (2022/11)

7.2 Description of Existing Works (in proximity to proposed works)

7.3 For each sewer, please provide the following details in the chart below (or equivalent) Street From (street/manhole) To (street/manhole) Diameter (mm) Roughness

7.4 Has the Sanitary Sewer Design Sheet (or equivalent) been included with this submission? (refer to Guidance Document in Appendix B)

🗌 Yes 🗌 No

7.5 Please indicate which sewage types are applicable in the drainage area and list the daily design flows used in the pipe design for each type.

Sewage Type	Recommended	Used
Domestic	225 - 450 L/cap/day	
Hospitals	900 - 1800 L/bed/day	
Schools	70 - 140 L/student/day	
Trailer Parks	340 - 800 L/space/day	
Infiltration	0.1 - 0.28 L/ha/s	
Industrial	35 - 55 m3/ha/day	
Shopping Centres	2500 - 5000 L/1000 m2/day	
Hotels/Motels	150 - 225 L/bed space/day	
Other		

If USED sewage daily design flow does not fall within the RECOMMENDED range, please provide rationale below

7.6 (a) What is the full flow velocity range for all sanitary sewers in the proposed works?

to

(b) If the full flow velocity is outside of the range of 0.6 m/s to 3.0 m/s, what measures will be employed to reduce sewage build up and/or erosion in the pipe?

m/s

7.7 It is recommended that sanitary sewers be laid at sufficient depth to receive gravity flow from basements. Are any sanitary sewers above the depth of any basements in the area?

🗌 Yes 🗌 No

If 'Yes', what methods will be employed to prevent sewage backup into basements?

8.0 Forcemains

For Questions 8.1 to 8.3, please attach an additional sheet if necessary

8.1 Description of Proposed Forcemain(s) (including service area/development)

8.2 Description of Existing Works (in proximity to proposed works)

8.3 For each forcemain, pl	ease provide the following de	etails in the chart below (or equivalent)		
Street	From (street/manhole)	To (street/manhole)	Diameter (mm)	Roughness	

8.4 (a) Is there an existing ECA for the pumping station associated with this forcemain? 6238 (2022/11)

🗌 Yes 🗌 No

If 'Yes', please provide the Certificate of Approval Number:

If 'No', please complete 8.4(b)

(b) Please provide the pumping station design elements by completing Tables 1, 2, and 3 in Appendix C. Have Tables 1, 2, and 3 been included with this submission?

Yes No

8.5 If this system is not a grinder pump system, is the minimum pipe size at least 100 mm to allow for the passage of small solids?

🗌 Yes 🗌 No

If 'No', please indicate below which methods will be employed to prevent a blockage in the pipe

8.6 (a) What is the velocity range for all forcemains in the proposed works?

to

m/s

(b) If the velocity falls outside of the range of 0.8 m/s to 2.5 m/s, what measures will be employed to reduce sewage build up and/or erosion in the pipe?

8.7 Have the effects of hydraulic transient been considered?

🗌 Yes 🗌 No

If 'Yes', please indicate the results below

Site location (City) Ref # Design Storm: The Year Storm Event Rational Formula: Q = 2.78*CIA Where: Q: peak flow (L/s) Where: Q: peak flow (L/s) C: runoff coefficient I: rainfall intensity (mm/h) A: area (ha) A: area (ha) Street MH/CB) (MH/CB) MH/CB)					
n Storm: The Year Storm Event and Formula: Q = 2.78*CIA and Formula: Q = 2.78*CIA and Formula: Q = 2.78*CIA C: runoff coefficient I: rainfall intensity (mm/h) A: area (ha) A:		۳		Checking Dat	Checking Date (yyyy/mm/dd)
Year Storm Eve at (mm/h) Area (A) Area (A) Coefficie nt (C) nt (C)	Reviewer			_	
From (MH/CB) To Area (A) Runoff nt (C) nt (C) nt (C) nt (C) nt (C) nt (C)	ent Concentration time: tc = ti + tf (minute) Where: ti: inlet time before pipe (minute) tf: time of flow in pipe (minute) tf = L/(60V) (minute)	Manning Equation: Qcap. = (D/1000)^2.667*(S/ D: pipe size (mm) S: slope (grade) of pipe (%) n: roughness coefficient	Manning Equation: Qcap. = (D/1000)^2.667*(S/100)^0.5/(3.211*n)*1000 (L/s) D: pipe size (mm) S: slope (grade) of pipe (%) n: roughness coefficient	3.211*n)*1000 ((s/
From (MH/CB) To (MH/CB) Area (A) (ha) Runoff (ha) mt (C) nt (C) mt (C)	Runoff		Pipe	đ	
	Section Accum. ation Intensity (AC) (ha) (AC) (ha) (time (tc) (h) hr) (time (tc) (h) hr)	Peak Flow (Q) (L) (m) (S	Slope N. D. (D) Qcap. (S) (%) (mm) s) s)	V (full) (m/s)	Time of flow in (Q) / pipe Qcap. (min.) (tt)

6238 (2022/11)

Appendi	x B - Sam	Appendix B - Sample Template	late													
Sanitary Sewer D Site location (City)	Sewer De ion (City)	Sanitary Sewer Design Sheet Site location (City)	eet						<u> </u>					hecking D	Checking Date (yyyy/mm/dd)	(pp/uu
Ref #							Reviewer	ver								
Residenti	al Unit av	Residential Unit average daily flow (q):	y flow (q):			L/cap.d ((225~450	L/cap.d)	(225~450 L/cap.d) Unit extraneous flow (E):	teous flow	(E):			L/s/ha	L/s/ha (0.1-0.28L.s.ha)	.s.ha)
q = avera I = Unit o Q(p) = pe Q(I) = pe Q(d) = pe	ge daily p f peak ext sak popula sak extran sak design	q = average daily per capita flow (I = Unit of peak extraneous flow (I Q(p) = peak population flow (L/s) Q(I) = peak extraneous flow (L/s) Q(d) = peak design flow (L/s)	q = average daily per capita flow (L/cap.d) I = Unit of peak extraneous flow (L/s/ha) Q(p) = peak population flow (L/s) Q(I) = peak extraneous flow (L/s) Q(d) = peak design flow (L/s)		Peaking Factor: M =1+14/(4+(P/1000)^0.5) Q(p) = (P/1000)qM/86.4 (L/s) Q(l) = IA (L/s); where A = Area in hectares Q(d) = Q(p) + Q(l) (L/s)	actor: 4+(P/1000 000)qM/8 L/s); wher) + Q(I) (L)^0.5) 6.4 (L/s) ∋ A = Area ./s)	a in hectare		Manning Equation: Qcap. = (D/1000)^2.667*(S/ D: pipe size (mm) S: slope (grade) of pipe (%) n: roughness coefficient	uation: 1000)^2.6((mm) ide) of pip s coefficie	Manning Equation: Qcap. = (D/1000)^2.667*(S/100)^0.5/(3.211*n)*1000 (L/s) D: pipe size (mm) S: slope (grade) of pipe (%) n: roughness coefficient	^0.5/(3.21	1*n)*1000	(L/S)	
				·		Inlet Flow	Flow	·	·				Ē	Pipe		
	Location	·	Indiv	Individual	Accumulative		Peaking	Pop.	Extran.	Design	Length	Size	Slope	Capacity Velocity	Velocity	
Street Name	From (MH)	To (MH)	P (person)	P (person) Area (ha)	P (person)	Area (ha)	Factor (M)	Q(p) (L/ s)	Q(e) (L/ s)	Q(d) (L/ s)	(m)	D (mm)	S (%)	Qcap. (L/s)	V (m/s)	Q(d)/ Qcap
Note: Th Sar	is table ha iitary Sew	This table has been provided Sanitary Sewer Design Sheet.	ovided as Sheet	a referenc	e template	: only. App	licants are	encouraç	Note: This table has been provided as a reference template only. Applicants are encouraged to use this sample template as an example when creating their own Sanitary Sewer Design Sheet.	this samp.	le templat	e as an ex	ample wh	en creatinç	g their own	

Table 1 (H-1 of APPENDIX H)

Sewage Pumping Station Design – Table 1 Municipality

Pumping Station

Designed by						Date (yyyy/mm/dd)
Design	. Subject	Unit	Initial Period	10 Year Period	20 Year Period	Ultimate Period
	A) Residential	ha				
Tributary	B) Commercial	ha				
	C) Industrial	ha				
Population Density		Pers/ha				
	A) Residential	No.				
Population or Equivalent	B) Commercial	No.				
	C) Industrial	No.				
Per Cap	ita Flow	L/cap.d				
Average	Flow	L/s				
Peak Flo	w Factor*					
Peak Dom	estic Flow	L/s				
Infiltration	Rate	L/ha.s				
Infiltration Flow		L/s				
Design Peak Flow		L/s				
Pumps		No.				
Pump Discharge		L/s				
Force Main	Diameter	mm				
Velocity		m/s				

Note: * The peak flow factor is: 1+14/(4+P^0.5), where P is designed population, in thousand.

Table 2 (H-2 of APPENDIX H)

Sewage Pumping Station Design – Table 2 Municipality

Pumping Station

Designed by				Date (yyyy/mm/dd)
Design Subject	Unit	C=120	C=130	C=140
Pump Design Flow	L/s			
Forcemain Diam.	mm			
Velo <u>c</u> ity	m/s			
Forcemain Length	m			
Forcemain Head Loss	m			
Suction Line Head Loss	m			
Discharge LineHead Loss	m			
Total Head Loss	m			
Low Water Level Wet Well	m			
High Water Level Wet Well	m			
Forcemain End Elevation	m			
Static Head Max.	m			
Static Head Min.	m			
Total Danamic Head Max.	m			
Total Danamic Head Min.	m			

Table 3 (Abstracted from Appendix I)
Information Required for Sewage Pumping Stations Applications
Standby Power Supply
Is standby power required? Yes No If yes, what kind of standby power is available for this pumping station? () a) Standby Generator () b) Portable Generator () c) Additional hydro feed line
Receiving Watercourse
 Will sewage be overflow/bypass any receiving watercourse? Yes No If yes, then: a) It will be necessary to know in detail the route by which overflow/bypass flow would gain access to the watercourse?
b) The flow in the receiving watercourse at the point of overflow/bypass from the pumping station is as follows:
flow in dry weather (m³/s)
flow in wet weather (m³/s)
c) The nearest water intake is located on the receiving watercourse within metres of the point of entry of the overflow.
Sewage Pumping Station
a) The operating authority responsible for maintenance and operation of this pumping station is
b) The high level alarm is set up to relay a signal to
c) Between the time of activation of the high level alarm and the overflow/basement flooding, there are:
m ³ of storage capacity available in the sewers;
m ³ of storage capacity available in the pumping station.
d) This storage will provide:
minutes retention before overflow/basement flooding occurs at the average daily L/s;
and minutes retention before overflow/basement flooding occurs at the peak L/s;
e) It is possible to bypass or pump around the pumping station with portable equipment by utilizing the following procedure